
Final - Open Access

3-1ARM7TDMI-S Data Sheet
ARM DDI 0084D

Programmer’s Model

This chapter describes the two operating states of the ARM7TDMI-S.

3.1 Processor Operating States 3-2
3.2 Switching State 3-3
3.3 Memory Formats 3-4
3.4 Instruction Length 3-5
3.5 Data Types 3-6
3.6 Operating Modes 3-7
3.7 Registers 3-8
3.8 The Program Status Registers 3-12
3.9 Exceptions 3-14
3.10 Interrupt Latencies 3-19
3.11 Reset 3-20

3

Final - Open Access

Programmer’s Model

3-2 ARM7TDMI-S Data Sheet
ARM DDI 0084D

3.1 Processor Operating States
From the programmer’s point of view, the ARM7TDMI-S can be in one of two states:

ARM state which executes 32-bit, word-aligned ARM instructions.

THUMB state which operates with 16-bit, halfword-aligned THUMB
instructions. In this state, the PC uses bit 1 to select between
alternate halfwords.

Note Transition between these two states does not affect the processor mode or the
contents of the registers.

Final - Open Access

Programmer’s Model

3-3ARM7TDMI-S Data Sheet
ARM DDI 0084D

3.2 Switching State

Entering THUMB state

Entry into THUMB state can be achieved by executing a BX instruction with the state
bit (bit 0) set in the operand register.

Transition to THUMB state will also occur automatically on return from an exception
(IRQ, FIQ, UNDEF, ABORT, SWI etc.), if the exception was entered with the processor
in THUMB state.

Entering ARM state

Entry into ARM state happens:

1 On execution of the BX instruction with the state bit clear in the operand
register.

2 On the processor taking an exception (IRQ, FIQ, RESET, UNDEF, ABORT,
SWI etc.).
In this case, the PC is placed in the exception mode’s link register, and
execution commences at the exception’s vector address.

Final - Open Access

Programmer’s Model

3-4 ARM7TDMI-S Data Sheet
ARM DDI 0084D

3.3 Memory Formats
ARM7TDMI-S views memory as a linear collection of bytes numbered upwards from
zero. Bytes 0 to 3 hold the first stored word, bytes 4 to 7 the second and so on.
ARM7TDMI-S can treat words in memory as being stored either in Big-endian or
Little-endian format.

3.3.1 Big-endian format
In big-endian format, the most significant byte of a word is stored at the lowest
numbered byte and the least significant byte at the highest numbered byte. Byte 0 of
the memory system is therefore connected to data lines 31 through 24.

3.3.2 Little-endian format
In little-endian format, the lowest numbered byte in a word is considered the word’s
least significant byte, and the highest numbered byte the most significant. Byte 0 of the
memory system is therefore connected to data lines 7 through 0.

Higher Address 31 24 23 16 15 8 7 0 Word Address

8 9 10 11 8

4 5 6 7 4

0 1 2 3 0

Lower Address • Most significant byte is at lowest address
• Word is addressed by byte address of most significant byte

 Figure 3-1: Big-endian addresses of bytes within words

Higher Address 31 24 23 16 15 8 7 0 Word Address

11 10 9 8 8

7 6 5 4 4

3 2 1 0 0

Lower Address • Least significant byte is at lowest address
• Word is addressed by byte address of least significant byte

 Figure 3-2: Little-endian addresses of bytes within words

Final - Open Access

Programmer’s Model

3-5ARM7TDMI-S Data Sheet
ARM DDI 0084D

3.4 Instruction Length
Instructions are either 32 bits long (in ARM state) or 16 bits long (in THUMB state).

Final - Open Access

Programmer’s Model

3-6 ARM7TDMI-S Data Sheet
ARM DDI 0084D

3.5 Data Types
ARM7TDMI-S supports byte (8-bit), halfword (16-bit) and word (32-bit) data types.
Words must be aligned to four-byte boundaries and half words to two-byte boundaries.

Final - Open Access

Programmer’s Model

3-7ARM7TDMI-S Data Sheet
ARM DDI 0084D

3.6 Operating Modes
ARM7TDMI-S supports seven modes of operation:

User (usr): The normal ARM program execution state

FIQ (fiq): Designed to support a data transfer or channel process

IRQ (irq): Used for general-purpose interrupt handling

Supervisor (svc): Protected mode for the operating system

Abort mode (abt): Entered after a data or instruction prefetch abort

System (sys): A privileged user mode for the operating system

Undefined (und): Entered when an undefined instruction is executed

Mode changes may be made under software control, or may be brought about by
external interrupts or exception processing. Most application programs will execute in
User mode. The non-user modes—known as privileged modes—are entered in order
to service interrupts or exceptions, or to access protected resources.

Final - Open Access

Programmer’s Model

3-8 ARM7TDMI-S Data Sheet
ARM DDI 0084D

3.7 Registers
ARM7TDMI-S has a total of 37 registers—31 general-purpose 32-bit registers and six
status registers—but these cannot all be seen at once. The processor state and
operating mode dictate which registers are available to the programmer.

3.7.1 The ARM state register set
In ARM state, 16 general registers and one or two status registers are visible at any
one time. In privileged (non-User) modes, mode-specific banked registers are
switched in. Figure 3-3: Register organization in ARM state on page 3-9 shows
which registers are available in each mode: the banked registers are marked with a
shaded triangle.

The ARM state register set contains 16 directly accessible registers: R0 to R15. All of
these except R15 are general-purpose, and may be used to hold either data or
address values. In addition to these, there is a seventeenth register used to store
status information

Register 14 is used as the subroutine link register. This receives a copy of
R15 when a Branch and Link (BL) instruction is executed. At
all other times it may be treated as a general-purpose
register. The corresponding banked registers R14_svc,
R14_irq, R14_fiq, R14_abt and R14_und are similarly used
to hold the return values of R15 when interrupts and
exceptions arise, or when Branch and Link instructions are
executed within interrupt or exception routines.

Register 15 holds the Program Counter (PC). In ARM state, bits [1:0] of
R15 are zero and bits [31:2] contain the PC. In THUMB state,
bit [0] is zero and bits [31:1] contain the PC.

Register 16 is the CPSR (Current Program Status Register). This
contains condition code flags and the current mode bits.

FIQ mode has seven banked registers mapped to R8q–14 (R8_fiq–R14_fiq). In ARM
state, many FIQ handlers do not need to save any registers. User, IRQ, Supervisor,
Abort and Undefined each have two banked registers mapped to R13 and R14,
allowing each of these modes to have a private stack pointer and link registers.

Final - Open Access

Programmer’s Model

3-9ARM7TDMI-S Data Sheet
ARM DDI 0084D

 Figure 3-3: Register organization in ARM state

ARM State General Registers and Program Counter

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8_fiq

R9_fiq

R10_fiq

R11_fiq

R12_fiq

R13_fiq

R14_fiq

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_svc

R14_svc

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_abt

R14_abt

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_irq

R14_irq

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_und

R14_und

R15 (PC)

System & User FIQ Supervisor Abort IRQ Undefined

CPSR CPSR

SPSR_fiq

CPSR

SPSR_svc

CPSR

SPSR_abt

CPSR

SPSR_irq

CPSR

SPSR_und

ARM State Program Status Registers

= banked register

Final - Open Access

Programmer’s Model

3-10 ARM7TDMI-S Data Sheet
ARM DDI 0084D

3.7.2 The THUMB state register set
The THUMB state register set is a subset of the ARM state set. The programmer has
direct access to eight general registers, R0–R7, as well as the Program Counter (PC),
a stack pointer register (SP), a link register (LR), and the CPSR. There are banked
Stack Pointers, Link Registers and Saved Process Status Registers (SPSRs) for each
privileged mode. This is shown in Figure 3-4: Register organization in THUMB
state on page 3-10.

 Figure 3-4: Register organization in THUMB state

R0

R1

R2

R3

R4

R5

R6

R7

SP

LR

PC

System & User FIQ Supervisor Abort IRQ Undefined

CPSR CPSR

SPSR_fiq

CPSR

SPSR_svc

CPSR

SPSR_abt

CPSR

SPSR_irq

CPSR

SPSR_und

R0

R1

R2

R3

R4

R5

R6

R7

SP_fiq

LR_fiq

PC

R0

R1

R2

R3

R4

R5

R6

R7

SP_svc

LR_svc

PC

R0

R1

R2

R3

R4

R5

R6

R7

SP_abt

LR_abt

PC

R0

R1

R2

R3

R4

R5

R6

R7

SP_irq

LR_irq

PC

R0

R1

R2

R3

R4

R5

R6

R7

SP_und

LR_und

PC

THUMB State General Registers and Program Counter

THUMB State Program Status Registers

= banked register

Final - Open Access

Programmer’s Model

3-11ARM7TDMI-S Data Sheet
ARM DDI 0084D

3.7.3 The relationship between ARM and THUMB state registers
The THUMB state registers relate to the ARM state registers in the following way:

• THUMB state R0–R7 and ARM state R0–R7 are identical
• THUMB state CPSR and SPSRs and ARM state CPSR and SPSRs are

identical
• THUMB state SP maps onto ARM state R13
• THUMB state LR maps onto ARM state R14
• The THUMB state Program Counter maps onto the ARM state Program

Counter (R15)

This relationship is shown in Figure 3-5: Mapping of THUMB state registers onto
ARM state registers on page 3-11.

 Figure 3-5: Mapping of THUMB state registers onto ARM state registers

3.7.4 Accessing Hi registers in THUMB state
In THUMB state, registers R8–R15 (the Hi registers) are not part of the standard
register set. However, the assembly language programmer has limited access to them,
and can use them for fast temporary storage.

A value may be transferred from a register in the range R0–R7 (a Lo register) to a Hi
register, and from a Hi register to a Lo register, using special variants of the MOV
instruction. Hi register values can also be compared against or added to Lo register
values with the CMP and ADD instructions. See 5.5 Format 5: Hi register operations/
branch exchange on page 5-13.

R0

R1
R2

R3

R5
R6

R7
R8
R9

R10
R11
R12

Stack Pointer (R13)
Link Register (R14)

Program Counter (R15)

R0

R1
R2

R3

R5

R6

R7

Stack Pointer (SP)
Link Register (LR)

Program Counter (PC)

CPSR CPSR
SPSR SPSR

THUMB state ARM state

R4R4

Lo
 r

eg
is

te
rs

H
i r

eg
is

te
rs

Final - Open Access

Programmer’s Model

3-12 ARM7TDMI-S Data Sheet
ARM DDI 0084D

3.8 The Program Status Registers
The ARM7TDMI-S contains a Current Program Status Register (CPSR), plus five
Saved Program Status Registers (SPSRs) for use by exception handlers. These
registers

• hold information about the most recently performed ALU operation
• control the enabling and disabling of interrupts
• set the processor operating mode

The arrangement of bits is shown in Figure 3-6: Program status register format.

 Figure 3-6: Program status register format

3.8.1 The condition code flags
The N, Z, C and V bits are the condition code flags. These may be changed as a result
of arithmetic and logical operations, and may be tested to determine whether an
instruction should be executed.

In ARM state, all instructions may be executed conditionally: see 4.2 The Condition
Field on page 4-5 for details.

In THUMB state, only the Branch instruction is capable of conditional execution: see
5.17 Format 17: software interrupt on page 5-38.

3.8.2 The control bits
The bottom 8 bits of a PSR (incorporating I, F, T and M[4:0]) are known collectively as
the control bits. These will change when an exception arises. If the processor is
operating in a privileged mode, they can also be manipulated by software.

The T bit This reflects the operating state. When this bit is set,
the processor is executing in THUMB state,
otherwise it is executing in ARM state. This is
reflected on the TBIT external signal.

Note that the software must never change the state
of the T bit in the CPSR. If this happens, the
processor will enter an unpredictable state.

Interrupt disable bits The I and F bits are the interrupt disable bits. When
set, these disable the IRQ and FIQ interrupts
respectively.

0123456782728293031

M0M1M2M3M4. FIVCZN

Overflow
Carry / Borrow

Zero
Negative / Less Than

Mode bits

FIQ disable
IRQ disable

. .

condition code flags control bits

State bit

(reserved)

23

. .

24

T

25

.

26

.

/ Extend

Final - Open Access

Programmer’s Model

3-13ARM7TDMI-S Data Sheet
ARM DDI 0084D

The mode bits The M4, M3, M2, M1 and M0 bits (M[4:0]) are the
mode bits. These determine the processor’s
operating mode, as shown in Table 3-1: PSR mode
bit values. Not all combinations of the mode bits
define a valid processor mode. Only use the bit
combinations described in the table. An illegal value
programmed into M[4:0] will cause the processor to
enter an unrecoverable state. If this occurs, apply
reset.

Reserved bits The remaining bits in the PSRs are reserved. When
changing a PSR’s flag or control bits, you must ensure
that these unused bits are not altered. Also, your
program should not rely on them containing specific
values, since in future processors they may read as
one or zero.

M[4:0] Mode Visible THUMB state
registers

Visible ARM state
registers

10000 User R7–R0,
LR, SP
PC, CPSR

R14–R0,
PC, CPSR

10001 FIQ R7–R0,
LR_fiq, SP_fiq
PC, CPSR, SPSR_fiq

R7–R0,
R14_fiq–R8_fiq,
PC, CPSR, SPSR_fiq

10010 IRQ R7–R0,
LR_irq, SP_irq
PC, CPSR, SPSR_irq

R12–R0,
R14_irq–R13_irq,
PC, CPSR, SPSR_irq

10011 Supervisor R7–R0,
LR_svc, SP_svc,
PC, CPSR, SPSR_svc

R12–R0,
R14_svc–R13_svc,
PC, CPSR, SPSR_svc

10111 Abort R7–R0,
LR_abt, SP_abt,
PC, CPSR, SPSR_abt

R12–R0,
R14_abt–R13_abt,
PC, CPSR, SPSR_abt

11011 Undefined R7–R0
LR_und, SP_und,
PC, CPSR, SPSR_und

R12–R0,
R14_und–R13_und,
PC, CPSR

11111 System R7–R0,
LR, SP
PC, CPSR

R14–R0,
PC, CPSR

 Table 3-1: PSR mode bit values

Final - Open Access

Programmer’s Model

3-14 ARM7TDMI-S Data Sheet
ARM DDI 0084D

3.9 Exceptions
Exceptions arise whenever the normal flow of a program has to be halted temporarily,
for example to service an interrupt from a peripheral. Before an exception can be
handled, the current processor state must be preserved so that the original program
can resume when the handler routine has finished.

It is possible for several exceptions to arise at the same time. If this happens, they are
dealt with in a fixed order—see 3.9.10 Exception priorities on page 3-17.

3.9.1 Action on entering an exception
When handling an exception, the ARM7TDMI-S:

1 Preserves the address of the next instruction in the appropriate Link Register.
If the exception has been entered from ARM state, the address of the next
instruction is copied into the Link Register (that is, current PC + 4 or PC + 8
depending on the exception. Refer to Table 3-2: Exception entry/exit on
page 3-15 for details). If the exception has been entered from THUMB state,
the value written into the Link Register is the current PC offset by a value such
that the program resumes from the correct place on return from the exception.
This means that the exception handler need not determine which state the
exception was entered from. For example, in the case of SWI, MOVS PC,
R14_svc will always return to the next instruction regardless of whether the
SWI was executed in ARM or THUMB state.

2 Copies the CPSR into the appropriate SPSR
3 Forces the CPSR mode bits to a value which depends on the exception
4 Forces the PC to fetch the next instruction from the relevant exception vector

It may also set the interrupt disable flags to prevent otherwise unmanageable nestings
of exceptions.

If the processor is in THUMB state when an exception occurs, it will automatically
switch into ARM state when the PC is loaded with the exception vector address.

3.9.2 Action on leaving an exception
On completion, the exception handler:

1 Moves the Link Register, minus an offset where appropriate, to the PC. (The
offset will vary depending on the type of exception.)

2 Copies the SPSR back to the CPSR.
3 Clears the interrupt disable flags, if they were set on entry.

Note An explicit switch back to THUMB state is never needed, because restoring the CPSR
from the SPSR automatically sets the T bit to the value it held immediately prior to the
exception.

Final - Open Access

Programmer’s Model

3-15ARM7TDMI-S Data Sheet
ARM DDI 0084D

3.9.3 Exception entry/exit summary
Table 3-2: Exception entry/exit summarizes the PC value preserved in the relevant
R14 on exception entry, and the recommended instruction for exiting the exception
handler.

Notes

1 Where PC is the address of the BL/SWI/Undefined Instruction fetch that had
the prefetch abort.

2 Where PC is the address of the instruction that did not get executed since the
FIQ or IRQ took priority.

3 Where PC is the address of the Load or Store instruction that generated the
data abort.

4 The value saved in R14_svc upon reset is unpredictable.

3.9.4 FIQ
The FIQ (Fast Interrupt Request) exception is designed to support a data transfer or
channel process, and in ARM state has sufficient private registers to remove the need
for register saving (thus minimizing the overhead of context switching).

FIQ is externally generated by taking the nFIQ input LOW.

Irrespective of whether the exception was entered from ARM or THUMB state, a FIQ
handler should leave the interrupt by executing:

 SUBS PC,R14_fiq,#4

FIQ may be disabled by setting the CPSR’s F flag (but note that this is not possible from
User mode). If the F flag is clear, ARM7TDMI-S checks for a LOW level on the output
of the FIQ synchronizer at the end of each instruction.

Exception
or Entry

Return Instruction Previous State
ARM THUMB
R14_x R14_x

Notes

BL MOV PC, R14 PC + 4 PC + 2 1

SWI MOVS PC, R14_svc PC + 4 PC + 2 1

UDEF MOVS PC, R14_und PC + 4 PC + 2 1

FIQ SUBS PC, R14_fiq, #4 PC + 4 PC + 4 2

IRQ SUBS PC, R14_irq, #4 PC + 4 PC + 4 2

PABT SUBS PC, R14_abt, #4 PC + 4 PC + 4 1

DABT SUBS PC, R14_abt, #8 PC + 8 PC + 8 3

RESET NA - - 4

 Table 3-2: Exception entry/exit

Final - Open Access

Programmer’s Model

3-16 ARM7TDMI-S Data Sheet
ARM DDI 0084D

3.9.5 IRQ
The IRQ (Interrupt Request) exception is a normal interrupt caused by a LOW level on
the nIRQ input. IRQ has a lower priority than FIQ and is masked out when a FIQ
sequence is entered. It may be disabled at any time by setting the I bit in the CPSR,
though this can only be done from a privileged (non-User) mode.

Irrespective of whether the exception was entered from ARM or Thumb state, an IRQ
handler should return from the interrupt by executing

SUBS PC,R14_irq,#4

3.9.6 Abort
An abort indicates that the current memory access cannot be completed. It can be
signalled by the external ABORT input. ARM7TDMI-S checks for the abort exception
during memory access cycles.

There are two types of abort:

Prefetch abort occurs during an instruction prefetch.

Data abort occurs during a data access.

If a prefetch abort occurs, the prefetched instruction is marked as invalid, but the
exception will not be taken until the instruction reaches the head of the pipeline. If the
instruction is not executed—for example because a branch occurs while it is in the
pipeline—the abort does not take place.

If a data abort occurs, the action taken depends on the instruction type:

1 Single data transfer instructions (LDR, STR) write back modified base
registers: the Abort handler must be aware of this.

2 The swap instruction (SWP) is aborted as though it had not been executed.
3 Block data transfer instructions (LDM, STM) complete. If write-back is set, the

base is updated. If the instruction would have overwritten the base with data
(ie. it has the base in the transfer list), the overwriting is prevented. All register
overwriting is prevented after an abort is indicated, which means in particular
that R15 (always the last register to be transferred) is preserved in an aborted
LDM instruction.

The abort mechanism allows the implementation of a demand paged virtual memory
system. In such a system the processor is allowed to generate arbitrary addresses.
When the data at an address is unavailable, the Memory Management Unit (MMU)
signals an abort. The abort handler must then work out the cause of the abort, make
the requested data available, and retry the aborted instruction. The application program
needs no knowledge of the amount of memory available to it, nor is its state in any way
affected by the abort.

After fixing the reason for the abort, the handler should execute the following
irrespective of the state (ARM or Thumb):

SUBS PC,R14_abt,#4 for a prefetch abort, or
SUBS PC,R14_abt,#8 for a data abort

This restores both the PC and the CPSR, and retries the aborted instruction.

3.9.7 Software interrupt
The software interrupt instruction (SWI) is used for entering Supervisor mode, usually
to request a particular supervisor function. A SWI handler should return by executing
the following irrespective of the state (ARM or THUMB):

MOV PC, R14_svc

This restores the PC and CPSR, and returns to the instruction following the SWI.

Final - Open Access

Programmer’s Model

3-17ARM7TDMI-S Data Sheet
ARM DDI 0084D

3.9.8 Undefined instruction
When ARM7TDMI-S comes across an instruction which it cannot handle, it takes the
undefined instruction trap. This mechanism may be used to extend either the THUMB
or ARM instruction set by software emulation.

After emulating the failed instruction, the trap handler should execute the following
irrespective of the state (ARM or Thumb):

MOVS PC,R14_und

This restores the CPSR and returns to the instruction following the undefined
instruction.

The ARM7TDMI-S is fully compliant with the ARM Instruction Set Architecture version
v4T in the trapping of all instruction bit patterns which are classified as undefined.

3.9.9 Exception vectors
The following table shows the exception vector addresses.

3.9.10 Exception priorities
When multiple exceptions arise at the same time, a fixed priority system determines the
order in which they are handled:

Highest priority:

1 Reset

2 Data abort

3 FIQ

4 IRQ

5 Prefetch abort

Lowest priority:

6 Undefined Instruction, Software interrupt.

Not all exceptions can occur at once:

Undefined Instruction and Software Interrupt are mutually exclusive, since they each
correspond to particular (non-overlapping) decodings of the current instruction.

Address Exception Mode on entry

0x00000000 Reset Supervisor

0x00000004 Undefined instruction Undefined

0x00000008 Software interrupt Supervisor

0x0000000C Abort (prefetch) Abort

0x00000010 Abort (data) Abort

0x00000014 Reserved Reserved

0x00000018 IRQ IRQ

0x0000001C FIQ FIQ

 Table 3-3: Exception vectors

Final - Open Access

Programmer’s Model

3-18 ARM7TDMI-S Data Sheet
ARM DDI 0084D

If a data abort occurs at the same time as a FIQ, and FIQs are enabled (ie. the CPSR’s
F flag is clear), ARM7TDMI-S enters the data abort handler and then immediately
proceeds to the FIQ vector. A normal return from FIQ will cause the data abort handler
to resume execution. Placing data abort at a higher priority than FIQ is necessary to
ensure that the transfer error does not escape detection. The time for this exception
entry should be added to worst-case FIQ latency calculations.

Final - Open Access

Programmer’s Model

3-19ARM7TDMI-S Data Sheet
ARM DDI 0084D

3.10 Interrupt Latencies
The worst case latency for FIQ, assuming that it is enabled, consists of the longest time
the request can take to pass through the synchronizer (Tsyncmax), plus the time for the
longest instruction to complete (Tldm, the longest instruction is an LDM which loads all
the registers including the PC), plus the time for the data abort entry (Texc), plus the
time for FIQ entry (Tfiq). At the end of this time ARM7TDMI-S will be executing the
instruction at 0x1C.

Tsyncmax is 3 processor cycles, Tldm is 20 cycles, Texc is 3 cycles, and Tfiq is 2
cycles. The total time is therefore 28 processor cycles. This is just over 1.4
microseconds in a system which uses a continuous 20 MHz processor clock. The
maximum IRQ latency calculation is similar, but must allow for the fact that FIQ has
higher priority and could delay entry into the IRQ handling routine for an arbitrary length
of time. The minimum latency for FIQ or IRQ consists of the shortest time the request
can take through the synchronizer (Tsyncmin) plus Tfiq. This is 4 processor cycles.

Final - Open Access

Programmer’s Model

3-20 ARM7TDMI-S Data Sheet
ARM DDI 0084D

3.11 Reset
When the nRESET signal goes LOW, ARM7TDMI-S abandons the executing
instruction.

When nRESET goes HIGH again, ARM7TDMI-S:

1 Overwrites R14_svc and SPSR_svc by copying the current values of the PC
and CPSR into them. The value of the saved PC and SPSR is not defined.

2 Forces M[4:0] to 10011 (Supervisor mode), sets the I and F bits in the CPSR,
and clears the CPSR’s T bit.

3 Forces the PC to fetch the next instruction from address 0x00.
4 Execution resumes in ARM state.

	Introduction
	1.1 Overview
	1.2 The ARM7TDMI�S Architecture
	1.3 Block Diagram
	1.4 Core Diagram
	1.5 Functional Diagram

	Signal Description
	2.1 Signal Description

	Programmer’s Model
	3.1 Processor Operating States
	3.2 Switching State
	3.3 Memory Formats
	3.4 Instruction Length
	3.5 Data Types
	3.6 Operating Modes
	3.7 Registers
	3.8 The Program Status Registers
	3.9 Exceptions
	3.10 Interrupt Latencies
	3.11 Reset

	ARM Instruction Set
	4.1 Instruction Set Summary
	4.2 The Condition Field
	4.3 Branch and Exchange (BX)
	4.4 Branch and Branch with Link (B, BL)
	4.5 Data Processing
	4.6 PSR Transfer (MRS, MSR)
	4.7 Multiply and Multiply-Accumulate (MUL, MLA)
	4.8 Multiply Long and Multiply-Accumulate Long (MULL,MLAL)
	4.9 Single Data Transfer (LDR, STR)
	4.10 Halfword and Signed Data Transfer
	4.11 Block Data Transfer (LDM, STM)
	4.12 Single Data Swap (SWP)
	4.13 Software Interrupt (SWI)
	4.14 Coprocessor Data Operations (CDP)
	4.15 Coprocessor Data Transfers (LDC, STC)
	4.16 Coprocessor Register Transfers (MRC, MCR)
	4.17 Undefined Instruction
	4.18 Instruction Set Examples

	THUMB Instruction Set
	5.1 Format 1: move shifted register
	5.2 Format 2: add/subtract
	5.3 Format 3: move/compare/add/subtract immediate
	5.4 Format 4: ALU operations
	5.5 Format 5: Hi register operations/branch exchange
	5.6 Format 6: PC-relative load
	5.7 Format 7: load/store with register offset
	5.8 Format 8: load/store sign-extended byte/halfword
	5.9 Format 9: load/store with immediate offset
	5.10 Format 10: load/store halfword
	5.11 Format 11: SP-relative load/store
	5.12 Format 12: load address
	5.13 Format 13: add offset to Stack Pointer
	5.14 Format 14: push/pop registers
	5.15 Format 15: multiple load/store
	5.16 Format 16: conditional branch
	5.17 Format 17: software interrupt
	5.18 Format 18: unconditional branch
	5.19 Format 19: long branch with link
	5.20 Instruction Set Examples

	Memory Interface
	6.1 Overview
	6.2 Cycle Types
	6.3 Byte Access Decoding
	6.4 Memory Management
	6.5 Locked Operations
	6.6 Stretching Access Times
	6.7 Bus Operation

	Coprocessor Interface
	7.1 Overview
	7.2 Interface Signals
	7.3 Register Transfer Cycle
	7.4 Privileged Instructions
	7.5 Idempotency
	7.6 Undefined Instructions

	Debug Interface
	8.1 Overview
	8.2 Debug Systems
	8.3 Debug Interface Signals
	8.4 Scan Chains and JTAG Interface
	8.5 Reset
	8.6 Instruction Register
	8.7 Public Instructions
	8.8 Test Data Registers
	8.9 ARM7TDMI-S Core Clock Domains
	8.10 The PC’s Behavior During Debug
	8.11 Priorities / Exceptions
	8.12 Scan Interface Timing

	EmbeddedICE Module
	9.1 Overview
	9.2 The Watchpoint Registers
	9.3 Programming Breakpoints
	9.4 Programming Watchpoints
	9.5 The Debug Control Register
	9.6 Debug Status Register
	9.7 Coupling Breakpoints and Watchpoints
	9.8 Disabling EmbeddedICE
	9.9 EmbeddedICE Timing
	9.10 Debug Communications Channel

	Instruction Cycle Operations
	10.1 Introduction
	10.2 Branch and Branch with Link
	10.3 THUMB Branch with Link
	10.4 Branch and Exchange (BX)
	10.5 Data Operations
	10.6 Multiply and Multiply Accumulate
	10.7 Load Register
	10.8 Store Register
	10.9 Load Multiple Registers
	10.10 Store Multiple Registers
	10.11 Data Swap
	10.12 Software Interrupt and Exception Entry
	10.13 Coprocessor Data Operation
	10.14 Coprocessor Data Transfer (from memory to coprocessor)
	10.15 Coprocessor Data Transfer (from coprocessor to memory)
	10.16 Coprocessor Register Transfer (Load from coprocessor)
	10.17 Coprocessor Register Transfer (Store to coprocessor)
	10.18 Undefined Instructions and Coprocessor Absent
	10.19 Unexecuted Instructions
	10.20 Instruction Speed Summary

	DC Parameters
	AC Parameters
	12.1 Introduction
	12.2 AC Timing Parameter Definitions

	Appendix
	A.1 ARM7TDMI-S and ARM7TDMI Macrocell Interfaces

